References:
[1]
G.Ó. Friðleifsson, W.A. Elders
The Iceland Deep Drilling Project: a search for deep unconventional geothermal resources
Geothermics, 34 (3) (2005), pp. 269-285, 10.1016/j.geothermics.2004.11.004
View PDFView articleView in ScopusGoogle Scholar
[2]
G.Ó. Friðleifsson, W.A. Elders, A. Albertsson
The concept of the Iceland deep drilling project
Geothermics, 49 (2014), pp. 2-8, 10.1016/j.geothermics.2013.03.004
View PDFView articleGoogle Scholar
[3]
H. Asanuma, H. Muraoka, N. Tsuchiya, H. Ito
The concept of the Japan Beyond-Brittle Project (JBBP) to develop EGS reservoirs in ductile zones
GRC Transactions, 36 (2012), pp. 359-364
View in ScopusGoogle Scholar
[4]
T.T. Cladouhos, S. Petty, A. Bonneville, A. Schultz, C.F. Sorlie
Super Hot EGS and the Newberry Deep Drilling Project
(2018)
Google Scholar
[5]
G. Bignall
Hotter and deeper: New Zealand's research programme to harness its deep geothermal resources
Proc. World Geoth. Cong. (2010)
Google Scholar
[6]
F. Batini, P.D. Burgassi, G.M. Cameli, R. Nicolich, P. Squarci
Contribution to the Study of the Deep Lithospheric Profiles: "deep" Reflecting Horizons in Larderello-Travale Geothermal Field
(1978)
Google Scholar
[7]
F. Batini, G. Bertini, G. Gianelli, E. Pandeli, M. Puxeddu
Deep structure of the Larderello field: contribution from recent geophysical and geological data
Soc. Geol. Ital. Mem., 25 (1983), pp. 219-235
Google Scholar
[8]
F. Batini, R. Nicolich
P and S reflection seismic profiling and well logging in the travale geothermal field
Geothermics, 14 (5) (1985), pp. 731-747, 10.1016/0375-6505(85)90049-5
View PDFView articleView in ScopusGoogle Scholar
[9]
R Bertani, H Büsing, S Buske, A Dini, M Hjelstuen, M Luchini, et al.
The first results of the Descramble project
Proc. 43rd Workshop on Geothermal Reservoir Engineering, Stanford, California, February 12-14, 2018 (2018)
SGP-TR-213, 16 pp
Google Scholar
[10]
G. Magro, F. Gherardi, G. Giudetti, M. Costantino, E. Carcione
DESCRAMBLE project: gas logging while drilling the Venelle_2 geothermal well (Larderello, Italy)
Proceedings of the World Geothermal Congress 2020+1 (2021)
Reykjavik, Iceland, April-October
Google Scholar
[11]
G. Magro, E. Droghieri, F. Gherardi
Drilling super-hot horizons of the Larderello geothermal field: insights from noble gases
E3S Web Conf., 98 (2019), Article 12012
CrossRefView in ScopusGoogle Scholar
[12]
K. Pruess, C. Oldenburg, G. Moridis
TOUGH2 User's Guide, Version 2.0. Report LBNL-43134
Lawrence Berkeley National Laboratory, Berkeley, Calif (1999)
Google Scholar
[13]
G. Lavecchia, F. Stoppa
The Tyrrhenian zone: a case of lithosphere extension control of intra-continental magmatism
Earth Planet Sci. Lett., 99 (4) (1990), pp. 336-350, 10.1016/0012-821X(90)90138-N
View PDFView articleView in ScopusGoogle Scholar
[14]
G. Serri, F. Innocenti, P. Manetti
Geochemical and petrological evidence of the subduction of delaminated Adriatic continental lithosphere in the genesis of the Neogene-Quaternary magmatism of central Italy
Tectonophysics, 223 (1) (1993), pp. 117-147, 10.1016/0040-1951(93)90161-C
View PDFView articleView in ScopusGoogle Scholar
[15]
L. Carmignani, F.A. Decandia, P.L. Fantozzi, A. Lazzarotto, D. Liotta, M. Meccheri
Tertiary extensional tectonics in Tuscany (Northern Apennines, Italy)
Tectonophysics, 238 (1) (1994), pp. 295-315, 10.1016/0040-1951(94)90061-2
View PDFView articleView in ScopusGoogle Scholar
[16]
L. Jolivet, J.M. Daniel, C. Truffert, B. Goffé
Exhumation of deep crustal metamorphic rocks and crustal extension in arc and back-arc regions
Lithos, 33 (1) (1994), pp. 3-30, 10.1016/0024-4937(94)90051-5
View PDFView articleView in ScopusGoogle Scholar
[17]
R.D. Dallmeyer, D. Liotta
Extension, uplift of rocks and cooling ages in thinned crustal provinces: the Larderello geothermal area (inner Northern Apennines, Italy)
Geol. Mag., 135 (2) (1998), pp. 193-202, 10.1017/S0016756898008309
View in ScopusGoogle Scholar
[18]
B. Della Vedova, S. Bellani, G. Pellis, P. Squarci
Deep temperatures and surface heat flow distribution
G.B. Vai, I.P. Martini (Eds.), Anatomy of an Orogen: the Apennines and Adjacent Mediterranean Basins, Springer Netherlands, Dordrecht (2001), pp. 65- 76
Google Scholar
[19]
S. Bellani, A. Brogi, A. Lazzarotto, D. Liotta, G. Ranalli
Heat flow, deep temperatures and extensional structures in the Larderello Geothermal Field (Italy): constraints on geothermal fluid flow
J. Volcanol. Geoth. Res., 132 (1) (2004), pp. 15-29, 10.1016/S0377-0273(03)00418-9
View PDFView articleView in ScopusGoogle Scholar
[20]
G. Bertini, M. Casini, G. Gianelli, E. Pandeli
Geological structure of a long-living geothermal system
Larderello, Italy. Terra Nova., 18 (3) (2006), pp. 163-169, 10.1111/j.1365-3121.2006.00676.x
View in ScopusGoogle Scholar
[21]
G.M. Cameli, I. Dini, D. Liotta
Upper crustal structure of the Larderello geothermal field as a feature of post-collisional extensional tectonics (Southern Tuscany, Italy)
Tectonophysics, 224 (4) (1993), pp. 413-423, 10.1016/0040-1951(93)90041-H
View PDFView articleView in ScopusGoogle Scholar
[22]
G. Cameli
Brittle/ductile boundary from seismic reflection lines of southern Tuscany (Northern Apennines, Italy)
Mem. Soc. Geol. It, 52 (1998), pp. 153-162
Google Scholar
[23]
F. Batini, G. Bertini, G. Gianelli, E. Pandeli, M. Puxeddu, I. Villa
Deep structure, age and evolution of the Larderello-Travale geothermal field
GRC Transactions, 9 (1985), pp. 253-259
View in ScopusGoogle Scholar
[24]
B.L. Cox, K. Pruess
Numerical experiments on convective heat transfer in water saturated porous media at near-critical conditions
Transport Porous Media, 5 (3) (1990), pp. 299-323
View in ScopusGoogle Scholar
[25]
W.M. Kissling
Extending MULKOM to super-critical temperatures and pressures
Proc. WGC 1995 (1995), pp. 1687-1690
Firenze, Italy
Google Scholar
[26]
T.H. Brikowski
Modeling supercritical systems with TOUGH2: preliminary results using the EOS1SC equation of state module
Proc. 26th Work. Geoth. Res. Eng, Stanford University, Stanford, CA (2001)
Google Scholar
[27]
A.E. Croucher, M.J. O'Sullivan
Application of the computer code TOUGH2 to the simulation of supercritical conditions in geothermal systems
Geothermics, 37 (2008), pp. 622-634, 10.1016/j.geothermics.2008.03.005
View PDFView articleView in ScopusGoogle Scholar
[28]
L. Magnusdottir, S. Finsterle
An iTOUGH2 equation-of-state module for modeling supercritical conditions in geothermal reservoirs
Geothermics, 57 (2015), pp. 8-17, 10.1016/j.geothermics.2015.05.003
View PDFView articleView in ScopusGoogle Scholar
[29]
W.M. Kissling
Transport of three-phase hyper-saline brines in porous media: theory and code implementation
Transport Porous Media, 61 (2005), pp. 25-44
CrossRefView in ScopusGoogle Scholar
[30]
R. McKibbin, A. McNabb
Deep hydrothermal systems: mathematical modeling of hot dense brines containing noncondensible gases
J. Porous Media, 2 (1) (1999), pp. 107-126
View in ScopusGoogle Scholar
[31]
J. O'Sullivan, M.J. O'Sullivan, A. Croucher
Improvements to the AUTOUGH2 supercritical simulator with extension to the air-water equation-of-State
GRC Transactions, 40 (2016), pp. 921-930
View in ScopusGoogle Scholar
[32]
Gudmundsdottir H, Jonsson MT, Palsson H. Conference The wellbore simulator FloWell.
Google Scholar
[33]
A. Goldszal, J.I. Monsen, T.J. Danielson, K.M. Bansal, Z.L. Yang, S.T. Johansen, et al.
Ledaflow 1D: Simulation Results with Multiphase Gas/Condensate and Oil/Gas Field Data
(2007)
Google Scholar
[34]
A. Battistelli, S. Finsterle, M. Marcolini, L. Pan
Modeling of coupled wellbore-reservoir flow in steam-like supercritical geothermal systems
Geothermics, 86 (2020), Article 101793, 10.1016/j.geothermics.2019.101793
View PDFView articleView in ScopusGoogle Scholar
[35]
L. Pan, C.M. Oldenburg, Y.-S. Wu, K. Pruess
T2Well/ECO2N Version 1.0: Multiphase and Non-isonthermal Model for Coupled Wellbore-Reservoir Flow of Carbon Dioxide and Variable Salinity Water. LBNL-4291E
Lawrence Berkeley National Laboratory, Berkeley, Calif (2011)
Google Scholar
[36]
L. Pan, C.M. Oldenburg
T2Well-an integrated wellbore-reservoir simulator
Comput. Geosci., 65 (2014), pp. 46-55, 10.1016/j.cageo.2013.06.005
View PDFView articleView in ScopusGoogle Scholar
[37]
G. Feng, Y. Wang, T. Xu, F. Wang, Y. Shi
Multiphase flow modeling and energy extraction performance for supercritical geothermal systems
Renew. Energy, 173 (2021), pp. 442-454, 10.1016/j.renene.2021.03.107
View PDFView articleView in ScopusGoogle Scholar
[38]
G. Feng, T. Xu, F. Gherardi, Z. Jiang, S. Bellani
Geothermal assessment of the Pisa plain, Italy: coupled thermal and hydraulic modeling
Renew. energy, 111 (2017), pp. 416-427, 10.1016/j.renene.2017.04.034
View PDFView articleView in ScopusGoogle Scholar
[39]
K. Zhang, Y.S. Wu, K. Pruess
User's Guide for TOUGH2-MP -a Massively Parallel Version of the TOUGH2 Code. Report LBNL-315E
Lawrence Berkeley National Laboratory, Berkeley, Calif (2008)
Google Scholar
[40]
N. Zuber, J.A. Findlay
Average volumetric concentration in two-phase flow systems
J. Heat Tran., 87 (4) (1965), pp. 453-468
CrossRefView in ScopusGoogle Scholar
[41]
H. Shi, J.A. Holmes, L.J. Durlofsky, K. Aziz, L. Diaz, B. Alkaya, et al.
Drift-flux modeling of two-phase flow in wellbores
SPE J., 10 (2005), pp. 24-33
01
View in ScopusGoogle Scholar
[42]
J. Rutqvist, P.F. Dobson, J. Garcia, C. Hartline, P. Jeanne, C.M. Oldenburg, et al.
The northwest Geysers EGS demonstration project, California: pre-stimulation modeling and interpretation of the stimulation
Math. Geosci., 47 (1) (2015), pp. 3-29
CrossRefView in ScopusGoogle Scholar
[43]
Y. Yuan, T. Xu, J. Moore, H. Lei, B. Feng
Coupled thermo-hydro-mechanical modeling of hydro-shearing stimulation in an enhanced geothermal system in the raft river geothermal field, USA
Rock Mech. Rock Eng., 53 (12) (2020), pp. 5371-5388
CrossRefView in ScopusGoogle Scholar
[44]
A. Ebigbo, J. Niederau, G. Marquart, I. Dini, M. Thorwart, W. Rabbel, et al.
Influence of depth, temperature, and structure of a crustal heat source on the geothermal reservoirs of Tuscany: numerical modelling and sensitivity study
Geoth. Energy, 4 (1) (2016), pp. 1-29
Google Scholar
[45]
A. Morin, B.T. LØvfall, E. Meese
Simulation of Supercritical Water Flow in the Venelle 2 Well
(2016)
Google Scholar
[46]
H.J. Ramey Jr.
Wellbore heat transmission
J. Petrol. Technol., 225 (1962), pp. 427-435
View in ScopusGoogle Scholar
[47]
G.S. Bödvarsson, C.F. Tsang
Injection and thermal breakthrough in fractured geothermal reservoirs
J. Geophys. Res. Solid Earth, 87 (B2) (1982), pp. 1031-1048, 10.1029/JB087iB02p01031
View in ScopusGoogle Scholar
[48]
S.K. Garg, J.W. Pritchett
Pressure transient analysis for two-phase geothermal wells: some numerical results
Water Resour. Res., 20 (7) (1984), pp. 963-970, 10.1029/WR020i007p00963
View in ScopusGoogle Scholar
[49]
M. O'Sullivan
Aspects of geothermal well test analysis in fractured reservoirs
Transport Porous Media, 2 (5) (1987), pp. 497-517
View in ScopusGoogle Scholar
[50]
M.C. Leverett
Capillary behavior in porous solids
Trans. AIME, 142 (1941), pp. 152-169, 10.2118/941152-g
01
Google Scholar
[51]
A. Battistelli, D. Swenson, A. Alcott
Improved PetraSim-TOUGH2 capabilities for the simulation of geothermal reservoirs
Proc. 42nd Workshop on Geothermal Reservoir Engineering, Stanford, California, February 13-15, 2017 (2017)
SGP-TR-212, 14 pp
Google Scholar
[52]
H.I. Stone
Probability model for estimating three-phase relative permeability
J. Petrol. Technol., 22 (2) (1970), pp. 214-218
Google Scholar
[53]
A.T. Corey
The interrelation between gas and oil relative permeabilities
Prod. Mon., 19 (1) (1954), pp. 38-41
Google Scholar
[54]
M.T. Van Genuchten
A closed-form equation for predicting the hydraulic conductivity of unsaturated soils
Soil Sci. Soc. Am. J., 44 (44) (1980), pp. 892-898
CrossRefView in ScopusGoogle Scholar
[55]
K. Pruess
Enhanced geothermal systems (EGS) using CO2 as working fluid-a novel approach for generating renewable energy with simultaneous sequestration of carbon
Geothermics, 35 (4) (2006), pp. 351-367, 10.1016/j.geothermics.2006.08.002
View PDFView articleView in ScopusGoogle Scholar
[56]
T. Xu, Y. Yuan, X. Jia, Y. Lei, S. Li, B. Feng, et al.
Prospects of power generation from an enhanced geothermal system by water circulation through two horizontal wells: a case study in the Gonghe Basin, Qinghai Province, China Qinghai Province, China
Energy (Oxford), 148 (2018), pp. 196-207, 10.1016/j.energy.2018.01.135
View PDFView articleView in ScopusGoogle Scholar
[57]
S.J. Zarrouk, H. Moon
Efficiency of geothermal power plants: a worldwide review
Geothermics, 51 (2014), pp. 142-153, 10.1016/j.geothermics.2013.11.001
View PDFView articleView in ScopusGoogle Scholar
[58]
P. Rose, J.M. Moore, J. Bradford, M. Mella, B. Ayling, J. McLennan
Tracer testing to characterize hydraulic stimulation experiments at the raft river EGS demonstration site
GRC Transactions, 41 (2017)
26-6
Google Scholar
[59]
B. Sanjuan, J.-L. Pinault, P. Rose, A. Gérard, M. Brach, G. Braibant, et al.
Tracer testing of the geothermal heat exchanger at Soultz-sous-Forêts (France) between 2000 and 2005
Geothermics, 35 (5) (2006), pp. 622-653, 10.1016/j.geothermics.2006.09.007
View PDFView articleView in ScopusGoogle Scholar
[60]
B.F. Ayling, R.A. Hogarth, P.E. Rose
Tracer testing at the Habanero EGS site, central Australia
Geothermics, 63 (2016), pp. 15-26, 10.1016/j.geothermics.2015.03.008
View PDFView articleView in ScopusGoogle Scholar
[61]
R. Egert, M.G. Korzani, S. Held, T. Kohl
Implications on large-scale flow of the fractured EGS reservoir Soultz inferred from hydraulic data and tracer experiments
Geothermics, 84 (2020), Article 101749, 10.1016/j.geothermics.2019.101749
View PDFView articleView in ScopusGoogle Scholar
[62]
T. Xu, X. Liang, Y. Xia, Z. Jiang, F. Gherardi
Performance evaluation of the Habanero enhanced geothermal system, Australia: optimization based on tracer and induced micro-seismicity data
Renew. Energy, 181 (2022), pp. 1197-1208, 10.1016/j.renene.2021.09.111
View PDFView articleView in ScopusGoogle Scholar
[63]
J.P. Brill, H.K. Mukherjee
Multiphase Flow in Wells
Society of Petroleum Engineers (1999)
Google Scholar